skip to main content


Search for: All records

Creators/Authors contains: "Schmiedeke, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. Context. The giant molecular cloud Sagittarius B2 (hereafter SgrB2) is the most massive region with ongoing high-mass star formation in the Galaxy. Two ultra-compact H ii (UCHii ) regions were identified in SgrB2’s central hot cores, SgrB2(M) and SgrB2(N). Aims. Our aim is to characterize the properties of the H ii regions in the entire SgrB2 cloud. Comparing the H ii regions and the dust cores, we aim to depict the evolutionary stages of different parts of SgrB2. Methods. We use the Very Large Array in its A, CnB, and D configurations, and in the frequency band C (~6GHz) to observe the whole SgrB2 complex. Using ancillary VLA data at 22.4 GHz and ALMA data at 96 GHz, we calculated the physical parameters of the UCH ii regions and their dense gas environment. Results. We identify 54 UCHii regions in the 6 GHz image, 39 of which are also detected at 22.4 GHz. Eight of the 54 UCHii regions are newly discovered. The UCHii regions have radii between 0.006 pc and 0.04 pc, and have emission measure between 10 6 pc cm 6 and 10 9 pc cm 6 . The UCHii regions are ionized by stars of types from B0.5 to O6. We found a typical gas density of ~10 6 –10 9 cm 3 around the UCH ii regions. The pressure of the UCH ii regions and the dense gas surrounding them are comparable. The expansion timescale of these UCHii regions is determined to be ~10 4 –10 5 yr. The percentage of the dust cores that are associated with H ii regions are 33%, 73%, 4%, and 1% for SgrB2(N), SgrB2(M), SgrB2(S), and SgrB2(DS), respectively. Two-thirds of the dust cores in SgrB2(DS) are associated with outflows. Conclusions. The electron densities of the UCHii regions we identified are in agreement with that of typical UCHii regions, while the radii are smaller than those of the typical UCHii regions. The dust cores in SgrB2(M) are more evolved than in SgrB2(N). The dust cores in SgrB2(DS) are younger than in SgrB2(M) or SgrB2(N). 
    more » « less